MATH2050C Selected Solution to Assignment 1

Section 2.2.

(8b) Solve $2 x-1=|x-5|$.
Solution Consider two cases: (a) $x<5$ and (b) $x \geq 5$. In (a) the equation becomes $2 x-1=$ $-(x-5)$. Solve it to get $x=2$. In (b) the equation becomes $2 x-1=x-5$ which is solved to get $x=-4$. Conclusion: $x=2,-4$ are the solutions for this equation.
Note: You may consider (a) $x \leq 5$ and (b) $x>5$ as well. There is no essential difference.
(10b) Solve $|x|+|x+1|<2$.
Solution Consider three cases: (a) $x<-1$, (b) $x \in[-1,0]$, and (c) $x>0$. In (a) the inequality becomes $-x-(x+1)<2$ which is solved to get $x>-3 / 2$. Hence the solution is $(-3 / 2,-1)$. In (b), the inequality becomes $-x+(x+1)<2$ which always holds. Hence the solution is $[-1,0]$. In (c), the inequality becomes $x+(x+1)<2$ which is solved to get $x<1 / 2$. Putting together, the solution of this inequality is $(-3 / 2,1 / 2)$.
(14b) Determine and sketch $\{(x, y):|x|+|y|=1\}$.
Solution The figure is the rhombus with vertices at $(1,0),(0,1),(-1,0),(0,-1)$.
(17) Show that for distinct a, b, there exist ε-n'd U of a and V of b such that $U \cap V=\phi$.

Solution Assume $b>a$. Letting $r=(b-a) / 2, U=V_{r}(a)$ and $V=V_{r}(b)$ satisfy our requirement. Recall that $V_{r}(a)=(a-r, a+r)$.

Supplementary Problems

The following optional problems are for you to practise mathematical induction.

1. Prove Bernoulli's Inequality:

$$
(1+x)^{n} \geq 1+n x, \quad x \geq-1, n \geq 1 .
$$

Solution See 2.1 Text.
2. Prove Binomial theorem: For real a, b,

$$
(a+b)^{n}=\sum_{k=0}^{n} C_{k}^{n} a^{n-k} b^{k}, \quad n \geq 1
$$

Here $C_{k}^{n}=\frac{n!}{k!(n-k)!}$ and $0!=1$.

Solution Use MI. It is obvious when $n=1$. Now assume n is true. Then

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)(a+b)^{n} \\
& =(a+b) \sum_{k=0}^{n} C_{k}^{n} a^{n-k} b^{k} \quad \text { by induction hypothesis } \\
& =\sum_{k=0}^{n} C_{k}^{n} a^{n-k+1} b^{k}+\sum_{k=0}^{n} C_{k}^{n} a^{n-k} b^{k+1} \\
& =\sum_{k=1}^{n}\left(C_{k}^{n}+C_{k-1}^{n}\right) a^{n-k+1} b^{k}+a^{n+1}+b^{n+1} \\
& =\sum_{k=1}^{n} C_{k}^{n+1} a^{n-k+1} b^{k}+a^{n+1}+b^{n+1} \\
& =\sum_{k=0}^{n+1} C_{k}^{n+1} a_{k}^{n+1-k} b^{k} .
\end{aligned}
$$

The formula for all n by induction.
3. Prove the GM-AM Inequality: For non-negative $a_{1}, a_{2}, \cdots, a_{n}$,

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right), \quad n \geq 1
$$

and equality in the inequality holds iff all a_{j} 's are equal.
Solution First show it is true for $n=2^{k}, k \geq 1$. When $k=1$, the inequality becomes

$$
\frac{1}{2}(a+b) \geq a b, a, b \geq 0
$$

and equality holds iff $a=b$. This comes from the relation $(x-y)^{2}>0$ whenever $x \neq y$ (taking $a=\sqrt{x}$ and $b=\sqrt{y}$). Now assume the case $n=2^{k}$ is true. We have

$$
\begin{aligned}
a_{1}+\cdots+a_{2^{k+1}} & =\left(a_{1}+\cdots+a_{2^{k}}\right)+\left(a_{2^{k}+1}+\cdots+a_{2^{k+1}}\right) \\
& \geq 2\left[\left(a_{1}+\cdots+a_{2^{k}}\right)\left(a_{2^{k}+1}+\cdots+a_{2^{k+1}}\right)\right]^{1 / 2} \\
& \left.\geq 2\left[2^{k}\left(a_{1} \cdots a_{2^{k}}\right)^{1 / 2^{k}} \times 2^{k}\left(a_{2^{k}+1} \cdots a_{2^{k+1}}\right)^{1 / 2^{k}}\right]^{1 / 2}\right) \quad \text { (induction hypothesis) } \\
& =2^{k+1}\left(a_{1} \cdots a_{2 k+1}\right)^{1 / 2^{k+1}} .
\end{aligned}
$$

Also, equality holds iff all a_{j} 's are equal. Now, for a general n. We fix some k such that $n<2^{k}$ and consider $a_{1}, \cdots, a_{n}, a_{n+1}, \cdots, a_{2^{k}}$ where $a_{n+1}=\cdots=a_{2^{k}}=\left(a_{1}+\cdots+a_{n}\right) / n$. Plugging this in the inequality for 2^{k}, after some computations, yields the inequality for n. Also equality holds iff all a_{j} 's are equal.

