MATH2050C Selected Solution to Assignment 1

Section 2.2.

(8b) Solve 2x - 1 = |x - 5|.

Solution Consider two cases: (a) x < 5 and (b) $x \ge 5$. In (a) the equation becomes 2x - 1 = -(x - 5). Solve it to get x = 2. In (b) the equation becomes 2x - 1 = x - 5 which is solved to get x = -4. Conclusion: x = 2, -4 are the solutions for this equation.

Note: You may consider (a) $x \le 5$ and (b) x > 5 as well. There is no essential difference.

(10b) Solve |x| + |x+1| < 2.

Solution Consider three cases: (a) x < -1, (b) $x \in [-1,0]$, and (c) x > 0. In (a) the inequality becomes -x - (x+1) < 2 which is solved to get x > -3/2. Hence the solution is (-3/2, -1). In (b), the inequality becomes -x + (x+1) < 2 which always holds. Hence the solution is [-1,0]. In (c), the inequality becomes x + (x+1) < 2 which is solved to get x < 1/2. Putting together, the solution of this inequality is (-3/2, 1/2).

(14b) Determine and sketch $\{(x, y) : |x| + |y| = 1\}.$

Solution The figure is the rhombus with vertices at (1,0), (0,1), (-1,0), (0,-1).

(17) Show that for distinct a, b, there exist ε -n'd U of a and V of b such that $U \cap V = \phi$.

Solution Assume b > a. Letting r = (b-a)/2, $U = V_r(a)$ and $V = V_r(b)$ satisfy our requirement. Recall that $V_r(a) = (a - r, a + r)$.

Supplementary Problems

The following optional problems are for you to practise mathematical induction.

1. Prove Bernoulli's Inequality:

$$(1+x)^n \ge 1+nx, \quad x \ge -1, n \ge 1.$$

Solution See 2.1 Text.

2. Prove Binomial theorem: For real a, b,

$$(a+b)^n = \sum_{k=0}^n C_k^n a^{n-k} b^k , \quad n \ge 1 .$$

Here $C_k^n = \frac{n!}{k!(n-k)!}$ and 0! = 1.

Solution Use MI. It is obvious when n = 1. Now assume n is true. Then

$$\begin{aligned} (a+b)^{n+1} &= (a+b)(a+b)^n \\ &= (a+b)\sum_{k=0}^n C_k^n a^{n-k} b^k \quad \text{by induction hypothesis} \\ &= \sum_{k=0}^n C_k^n a^{n-k+1} b^k + \sum_{k=0}^n C_k^n a^{n-k} b^{k+1} \\ &= \sum_{k=1}^n (C_k^n + C_{k-1}^n) a^{n-k+1} b^k + a^{n+1} + b^{n+1} \\ &= \sum_{k=1}^n C_k^{n+1} a^{n-k+1} b^k + a^{n+1} + b^{n+1} \\ &= \sum_{k=0}^{n+1} C_k^{n+1} a^{n+1-k} b^k . \end{aligned}$$

The formula for all n by induction.

3. Prove the GM-AM Inequality: For non-negative a_1, a_2, \cdots, a_n ,

$$(a_1 a_2 \cdots a_n)^{1/n} \le \frac{1}{n} (a_1 + a_2 + \cdots + a_n) , \quad n \ge 1,$$

and equality in the inequality holds iff all a_j 's are equal.

Solution First show it is true for $n = 2^k, k \ge 1$. When k = 1, the inequality becomes

$$\frac{1}{2}(a+b) \ge ab, \ a,b \ge 0,$$

and equality holds iff a = b. This comes from the relation $(x - y)^2 > 0$ whenever $x \neq y$ (taking $a = \sqrt{x}$ and $b = \sqrt{y}$). Now assume the case $n = 2^k$ is true. We have

$$a_{1} + \dots + a_{2^{k+1}} = (a_{1} + \dots + a_{2^{k}}) + (a_{2^{k}+1} + \dots + a_{2^{k+1}})$$

$$\geq 2 \left[(a_{1} + \dots + a_{2^{k}})(a_{2^{k}+1} + \dots + a_{2^{k+1}}) \right]^{1/2}$$

$$\geq 2 \left[2^{k}(a_{1} \cdots a_{2^{k}})^{1/2^{k}} \times 2^{k}(a_{2^{k}+1} \cdots a_{2^{k+1}})^{1/2^{k}} \right]^{1/2}) \quad \text{(induction hypothesis)}$$

$$= 2^{k+1}(a_{1} \cdots a_{2^{k+1}})^{1/2^{k+1}}.$$

Also, equality holds iff all a_j 's are equal. Now, for a general n. We fix some k such that $n < 2^k$ and consider $a_1, \dots, a_n, a_{n+1}, \dots, a_{2^k}$ where $a_{n+1} = \dots = a_{2^k} = (a_1 + \dots + a_n)/n$. Plugging this in the inequality for 2^k , after some computations, yields the inequality for n. Also equality holds iff all a_j 's are equal.